

industrial technologies program

Tools and Training for Industrial Energy Efficiency

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy

Texas Technology Showcase March 2003

Tools Available on Our Web Site

- **Motor Master** + Assists in energy-efficient motor selection and management.
- Pumping System Assessment

 Tool Helps industrial users
 assess the efficiency of pumping
 system operations.
- Steam System Scoping Tool –
 Profiles and grades steam system operations and management.
- Steam System Assessment Tool –
 Assists users in assessing potential
 benefits of specific steam-system
 improvements

- **Air Master**+ Provides comprehensive information on assessing compressed air systems.
- **3EPlus Insulation Assessment Tool** Helps to evaluate the thickness of insulation on steam lines.
- **ASDMaster** Helps users determine the economic feasibility of an ASD application.
- **PHAST*** Helps users assess how much energy is used and model ways to improve performance.

*Coming Soon!

Tools and Training Impacts

Average Annual Savings Identified (in Thousands of Dollars)

	Forest Products	Refining	Mining	Steel A	Aluminum	Chemicals
Pumps	186.5	46.0	410.7	231.5	74.4	
Compressed Air	128.9	118.6	235.6		107.0	127.0
Process Heating		1,112.5	1, 231.9	1, 500.0	945.0	
Steam	365.9	365.9	102.5	1,010.0		1,565.0

Systems Management: MotorMaster+ Main Menu

MotorMaster+ Purpose and Scope

- Supports improved management and efficient operation of motor systems
 - Productivity gains
 - Reduced downtime
- Evaluates cost of purchasing and operating new motors
 - Dollar and utility savings
- Provides ability to evaluate conservation opportunities and log maintenance actions
 - System reliability improvements

MotorMaster+ Features

- Motor price and performance database
- Motor selection tool
- Inventory management
- Maintenance logs
- Utility module, including motor rebate program support
- Life cycle cost analysis
- Tracks energy, cost savings, and other benefits

MotorMaster+ Motor Comparisons

- New, energy-efficient motor vs. new standard motor
- Repair vs.
 new energy-efficient motor
- Replacement with new, energy-efficient motor vs.
 continued operation of standard motor

Systems Management:

Pumping System Assessment Tool (PSAT)

PSAT

PSAT: Purpose and Scope

- Help end users identify systems worthy of further consideration (extension of prescreening process)
- Generate "what if" assessments, following the system head-capacity curve
- System loss shedding opportunity assessment
- Limitations:
 - Only 2 through 8 pole motors included in database
 - Several common pump styles are not included, for example:
 - "Plain" vertical turbine
 - Submersible
 - No explicit provision for adjustable speed drives

PSAT: General Methodology

- Uses measured fluid, electrical data.
- Extracts average motor performance characteristics from the MotorMaster+ database.
- Employs Hydraulic Institute algorithms for achievable pump efficiency.
- Estimates existing, "optimal" pump and motor efficiencies and associated operating costs.

PSAT

PSAT Results: Alcoa NA Extrusions

Pumping System Assessment Cressona Extrusion Plant

- Estimated annual savings range from \$26,000 to \$55,000
- Assessment cost: \$10,000

Opportunities Identified

- Trimming of pump impellers
- Installation of adjustable speed drives
- Checking lift settings
- Determining if a single pump will suffice where two are currently used

- Oak Ridge National Laboratory
- ALCOA North
 American Extrusions

Systems Management:

Steam System Scoping Tool

Steam System Scoping Tool: Purpose and Scope

The Steam System Scoping Tool was developed to help industrial users do the following:

- Evaluate their steam operations against identified best practices
- Develop greater awareness of energy efficiency, productivity improvements
- Compare tool results with those obtained by other users

Steam systems have four basic components.

Generation, Distribution, End Use, Recovery

Typical Input Page

Typical Summary Page

Summary of Results

Summary—			
Summary of Steam System Scoping Tool Re	sults		
Steam System Profiling		90	0
Steam System Operating Practices		140	0
Boiler Plant Operating Practices		80	0
Distribution, End Use, Recovery Operating F	Practices	30	0
Total Scoping Tool Questionnaire Score		340	0
Total Scoping Tool Questionnaire Score (%)			0.0%
Date That You Completed This Questionnai	re		
Total Scoping Tool Questionnaire Score Total Scoping Tool Questionnaire Score (%)			0

Steam System Scoping Tool: Results/Trends

	Possible	Average	Stand.
<u>Category</u>	Score	Score	Dev.
Profiling	90	43	30
System OP	140	112	14
Boiler OP	80	50	17
D/EU/R OP	30	16	5
TOTAL	100%	65%	16%

Steam System Assessment Tool (SSAT)

• PURPOSE:

Demonstrate magnitude – energy, cost,
 emission savings – of key steam system
 improvement opportunities

You Can Use SSAT To Evaluate These Key Steam Improvement Initiatives

- Real Cost Of Steam
- Steam Quality
- Boiler Efficiency
- Alternative Fuels
- Cogeneration Opportunities
- Steam Turbines vs PRVs
- Boiler Blowdown

- Condensate Recovery
- Steam Trap Operating Efficiency
- Heat Recovery
- Vent Steam
- Steam Leaks
- Insulation Efficiency
- Emissions Calculations

Key SSAT Features

- Choice of 1, 2, or 3 Header
 Pressure Models
- Schematics of Model Steam systems
- Estimates of Site Environmental Emissions

- Major Equipment Simulated:
 - Boiler
 - Back pressure turbines
 - Condensing turbine
 - Deaerator
 - Steam traps, leaks, insulation losses
 - Letdowns
 - Flash vessels
 - Feedwater preheat exchangers

- Example Screen

Systems Management:

AIRMaster+
Compressed Air Systems

AIRMaster+: Compressed Air System

- A. Control Panel
- B. Motors
- C. Compressor Air End
- D. Lubricant / Air Separator
- E. Aftercooler and Lubricant Cooler
- F. Air Inlet Filter
- G. Compressor Package Enclosure
- H. Filter, Regulator, and Lubricator
- I. Pneumatic Tool
- J. Air Filter
- K. Distribution System
- L. Air Receiver
- M. Dryer
- N. Supplemental Aftercooler
- O. Leaks

AIRMaster+: Purpose and Scope

- Supports short-term, compressed air system assessments based on simple instrumentation
- Identifies low-risk and quick-payback operation and maintenance improvements
- Enables an efficient and systematic approach for objective and repeatable assessments
- Models supply-side airflow and electrical demands, but not dynamic effects of distribution and end use

Compressed Air System: Augusta Newsprint

Compressed Air System Assessment Augusta, GA

- Estimated annual savings of \$59,000 and over 1 million kWh
- Assessment cost: \$5,000

Opportunities Identified

- Link the two compressed air systems and add a 10,000-gallon air storage tank to improve system efficiency.
- Identify and repair system leaks.
- Eliminate seldom-used equipment.
- Total cost of \$75,000 with simple payback in 1.3 years

10,000-gallon air storage tank

Augusta Newsprint
Company is part of a joint
partnership between Abitibi
Consolidated and the
Woodbridge Company, Ltd.

Systems Management:

3E-Plus
Insulation Appraisal Software

3E-Plus: Purpose and Scope

Used for performing insulation appraisal calculations:

- Energy
- Environmental
- Economic

3E-Plus: Main Menu

NORTH AMERICAN INSULATION MANUFACTURERS ASSOCIATION (NAIMA)

Energy

INSULATION THICKNESS

Surface Temperatures Personnel Protection Condensation Control

ENERGY LOSS/GAIN Bare & Insulated Surfaces

\$\$ COST OF ENERGY Bare & Insulated Surfaces

Environment

CO2, NOx, CE Reduction w/Insulation Thickness

CO2, NOx, CE Reductions for Economic Thickness Calculations

Economics

ECONOMIC THICKNESS Calculations for a NEW Insulation Project

ECONOMIC THICKNESS Calculations from a PREVIOUS Project

Click any button to proceed

Use the F1 key on your keyboard for help on any form

Options

Thermal Conductivity ("k-Factor") MENU

> External Covering (Jacket) MENU

> > Quit Program

3E-Plus: Energy Loss/Gain

- Inputs
 - Pipe size, material
 - Insulation material
 - Jacket material
 - Surface geometry
 - Operating hours
 - Process, ambient temperatures
 - Max. surface temp.
 - Wind speed

- Outputs (vs. insulation thickness):
 - Surface temp. (F)
 - Heat loss (Btu/ft-yr)
 - Efficiency (%)

3E-Plus Results: Georgia-Pacific

3E+ Insulation Evaluation

Georgia-Pacific plywood mill in Madison, GA

Saves \$138,560 in annual energy costs and reduces CO₂ emissions

Opportunity Identified

Install 2-inch mineral pipe insulation on 970 feet of steam lines.

The insulation increased dryer temperatures, reduced processing time, and cut a boiler energy consumption by 63 billion Btu annually.

- Georgia-Pacific Corp.
- NAIMA
- Rock Wool Mfg., Inc.

Systems Management:

Adjustable Speed Drive (ASDMaster)

Adjustable Speed Drives

ASDMaster

Provides the enduser with a tool to help with the application of ASDs to control process systems

ASDMaster: Program Goals

- Educate users on ASD technology
- Educate users on analyzing ASDs as part of an overall system.
- Assist users in properly analyzing the energy use of ASDs.
- Assist users in properly specifying and implementing ASDs.

ASDMaster can help you to...

- Perform energy analysis of potential ASD applications.
- Compile an ASD specification and bid list.
- Determine the economic value of an ASD's non-energy benefits.
- Analyze an the economics of an ASD application

Systems Management:

Process Heating Assessment and Survey Tool (PHAST)

PHAST: Plant Survey

Plant Survey

Step 1

Survey of plant process heating equipment
Collect energy use data for equipment or estimate of
energy consumption and cost using equipment
specifications and operating data/experience

Step 2

Summary of energy used by the plant process heating equipment using data collected in Step 1 and graphical illustration of energy usage distribution within the plant

(cont'd)

PHAST: Analysis & Assessment

PHAST: End Result

Supporting Tools / Guide End Result

Support

Guidance on method of data collection and instrumentation requirements

Check list for energy saving methods for process heating equipment

A tool to analyze effect of combustion variables on the "available heat" for the process

End result

List of possible activities and Resource Guide for further actions

PHAST Results: Alcoa NA Extrusions

Process Heating Assessment Plant City Extrusion Plant

Estimated annual saving of \$450,000

Opportunities Identified

- Maintain minimum required free oxygen in combustion
- Eliminate formation of excess carbon monoxide
- Preheat combustion air
- Use of water/air nozzles for accelerated cooling
- Optimize insulation
- Use of high convection or radiation burners
- Operate with full load minimum idle time

- CSGI, Inc.
- ALCOA North
 American Extrusions

OBJECTIVE

Design a Tool that assists the development of a cost-effective, plant-wide strategy and plan for NOX reduction and energy efficiency improvements.

The scoping tool is meant to be a general guide to assess available options for energy efficiency improvement and NOx reduction.

It will include:

- information on commonly used methods of energy efficiency improvement and NOx reduction using the available technologies, hardware or systems.
- Information on resources that will enable user to estimate energy reduction for equipment and processes used in chemical – petroleum refining plants.
- Information on NOx reduction through use of currently available combustion systems and other NOx reduction technologies.
- Data on cost of NOx reduction technologies/equipment and "rule-of-thumbs" for implementation cost obtained from the vendors and E&C firms.
- A model for consolidating and summarizing result and summary of the end-effects.

- All data will be presented as "default" data that can be changed by the user to allow for specific situations.
- This is only a scoping tool and not a substitute for detail engineering study that may be required to meet regulatory requirements.

Tool Approach

- Step 1 Divide plant into three major sections
- Step 2 Define plant supply side
- Step 3 Define plant demand side
- Step 4 Define plant distribution network
- Step 5 Define conceptual cost-effective combustion system improvement opportunities in Section 1
- Step 6 Define conceptual cost-effective energy efficiency improvement opportunities in Section 2
- Step 7 –summarize NOx reduction, energy savings and cost resulting from steps 5 and 6 & Identify the "gaps" between what can be achieved vs. the regulatory requirements
- Step 8 Define conceptual cost-effective 'tail-pipe" NOx reduction opportunities for selected Sources
- Step 9 Summarize and save the results steps 6, 7, and 8
- Step 10 Review and select select the most cost effective or applicable option for further considerations

Summary Report

Example of the Reported Items for Each Option Considered

(to be revised based on recommendations from the industry advisory committee)

- Total NOx reduction: ** Tons/year
- Total Energy Savings *** MM Btu/year
- Capital Cost: **** \$ per annual ton of NOx reduction
- Payback periods (NPV or IRR)
- Risk factor

Report Links

- Links to DOE-OIT Best Practices Tools (Process Heating, Pump System, Compressed Air, Steam System)
- Information and guide to Low NOx burner performance and cost data collected from the vendors and engineering companies
- Information on typical cost-performance data for "tail-pipe" NOx reduction systems

Report References

- List of suppliers and consultants
- Case studies supplied by the industry advisors
- Reference to articles and literature sources related to NOx reduction and energy efficiency improvements

EERE Industrial Energy Efficiency Training Opportunities

- Motor Systems Management
- Steam Systems Improvement
- Pump System Assessment
- Pump System Assessment Tool (PSAT) Specialist Training
- Fundamentals of Compressed Air Systems
- Advanced Management of Compressed Air Systems
- AirMaster+ Specialist Training
- Insulation Assessment
- Optimization of Process Heating Systems
- Process Heating Assessment Tool (PHAST) Specialist Training

Schedule Training

Contact your state energy office or Regional DOE Office:

<u>Atlanta</u>

David Godfrey

404-562-0568

Boston

Scott Hutchins 617-565-9765

<u>Chicago</u>

Brian Olsen

312-886-8579

Denver

Jack Jenkins

303-275-4824

Seattle

Chris Cockrill

816-873-3299

<u>Philadelphia</u>

Joe Barrett

215-656-6957